翻訳と辞書
Words near each other
・ Journal of Accounting Research
・ Journal of Accounting, Auditing & Finance
・ Journal of Acquired Immune Deficiency Syndromes
・ Journal of Acupuncture and Meridian Studies
・ Journal of Addiction Medicine
・ Jouko Kuha
・ Jouko Lindgren
・ Jouko Parviainen
・ Jouko Salomäki
・ Jouko Turkka
・ Jouko Törmänen
・ Jouko Vesterlund
・ Jouko Viitamäki
・ Jouko Väänänen
・ Joukowsky Institute for Archaeology and the Ancient World
Joukowsky transform
・ Joule
・ Joule (crater)
・ Joule (disambiguation)
・ Joule (programming language)
・ Joule (surname)
・ Joule Assets
・ Joule Centre
・ Joule effect
・ Joule expansion
・ Joule heating
・ Joule per mole
・ Joule thief
・ Joule Unlimited
・ Joule-second


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Joukowsky transform : ウィキペディア英語版
Joukowsky transform

In applied mathematics, the Joukowsky transform, named after Nikolai Zhukovsky, is a conformal map historically used to understand some principles of airfoil design.
The transform is
: z=\zeta+\frac,
where z=x+iy is a complex variable in the new space and \zeta=\chi + i \eta is a complex variable in the original space.
This transform is also called the Joukowsky transformation, the Joukowski transform, the Zhukovsky transform and other variations.
In aerodynamics, the transform is used to solve for the two-dimensional potential flow around a class of airfoils known as Joukowsky airfoils. A Joukowsky airfoil is generated in the ''z'' plane by applying the Joukowsky transform to a circle in the \zeta plane. The coordinates of the centre of the circle are variables, and varying them modifies the shape of the resulting airfoil. The circle encloses the point \zeta = −1 (where the derivative is zero) and intersects the point \zeta = 1. This can be achieved for any allowable centre position \mu_x + i\mu_y by varying the radius of the circle.
Joukowsky airfoils have a cusp at their trailing edge. A closely related conformal mapping, the Kármán–Trefftz transform, generates the much broader class of Kármán–Trefftz airfoils by controlling the trailing edge angle. When a trailing edge angle of zero is specified, the Kármán–Trefftz transform reduces to the Joukowsky transform.
==General Joukowsky transform==
The Joukowsky transform of any complex number \zeta to z is as follows
:
\begin
z &= x + iy =\zeta+\frac
\\
&= \chi + i \eta + \frac
\\
&= \chi + i \eta + \frac
\\
&= \frac + i\frac.
\end

So the real (''x'') and imaginary (''y'') components are:
:
\begin
x &= \frac
\qquad \text
\\
y &= \frac.
\end


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Joukowsky transform」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.